57 research outputs found

    Active Classification: Theory and Application to Underwater Inspection

    Full text link
    We discuss the problem in which an autonomous vehicle must classify an object based on multiple views. We focus on the active classification setting, where the vehicle controls which views to select to best perform the classification. The problem is formulated as an extension to Bayesian active learning, and we show connections to recent theoretical guarantees in this area. We formally analyze the benefit of acting adaptively as new information becomes available. The analysis leads to a probabilistic algorithm for determining the best views to observe based on information theoretic costs. We validate our approach in two ways, both related to underwater inspection: 3D polyhedra recognition in synthetic depth maps and ship hull inspection with imaging sonar. These tasks encompass both the planning and recognition aspects of the active classification problem. The results demonstrate that actively planning for informative views can reduce the number of necessary views by up to 80% when compared to passive methods.Comment: 16 page

    Genetic Optimization and Simulation of a Piezoelectric Pipe-Crawling Inspection Robot

    Get PDF
    Using the DarwinZk development software, a genetic algorithm (GA) was used to design and optimize a pipe-crawling robot for parameters such as mass, power consumption, and joint extension to further the research of the Miniature Inspection Systems Technology (MIST) team. In an attempt to improve on existing designs, a new robot was developed, the piezo robot. The final proposed design uses piezoelectric expansion actuators to move the robot with a 'chimneying' method employed by mountain climbers and greatly improves on previous designs in load bearing ability, pipe traversing specifications, and field usability. This research shows the advantages of GA assisted design in the field of robotics

    Search and Pursuit-Evasion in Mobile Robotics, A survey

    Get PDF
    This paper surveys recent results in pursuitevasion and autonomous search relevant to applications in mobile robotics. We provide a taxonomy of search problems that highlights the differences resulting from varying assumptions on the searchers, targets, and the environment. We then list a number of fundamental results in the areas of pursuit-evasion and probabilistic search, and we discuss field implementations on mobile robotic systems. In addition, we highlight current open problems in the area and explore avenues for future work

    Active planning for underwater inspection and the benefit of adaptivity

    Get PDF
    We discuss the problem of inspecting an underwater structure, such as a submerged ship hull, with an autonomous underwater vehicle (AUV). Unlike a large body of prior work, we focus on planning the views of the AUV to improve the quality of the inspection, rather than maximizing the accuracy of a given data stream. We formulate the inspection planning problem as an extension to Bayesian active learning, and we show connections to recent theoretical guarantees in this area. We rigorously analyze the benefit of adaptive re-planning for such problems, and we prove that the potential benefit of adaptivity can be reduced from an exponential to a constant factor by changing the problem from cost minimization with a constraint on information gain to variance reduction with a constraint on cost. Such analysis allows the use of robust, non-adaptive planning algorithms that perform competitively with adaptive algorithms. Based on our analysis, we propose a method for constructing 3D meshes from sonar-derived point clouds, and we introduce uncertainty modeling through non-parametric Bayesian regression. Finally, we demonstrate the benefit of active inspection planning using sonar data from ship hull inspections with the Bluefin-MIT Hovering AUV.United States. Office of Naval Research (ONR Grant N00014-09-1-0700)United States. Office of Naval Research (ONR Grant N00014-07-1-00738)National Science Foundation (U.S.) (NSF grant 0831728)National Science Foundation (U.S.) (NSF grant CCR-0120778)National Science Foundation (U.S.) (NSF grant CNS-1035866

    Learning uncertainty models for reliable operation of Autonomous Underwater Vehicles

    Full text link
    Abstract — We discuss the problem of learning uncertainty models of ocean processes to assist in the operation of Au-tonomous Underwater Vehicles (AUVs) in the ocean. We focus on the prediction of ocean currents, which have significant effect on the navigation of AUVs. Available models provide accurate prediction of ocean currents, but they typically do not provide confidence estimates of these predictions. We propose augmenting existing prediction methods with variance measures based on Gaussian Process (GP) regression. We show that commonly used measures of variance in GPs do not accurately reflect errors in ocean current prediction, and we propose an alternative uncertainty measure based on interpolation variance. We integrate these measures of uncertainty into a probabilistic planner running on an AUV during a field deployment in the Southern California Bight. Our experiments demonstrate that the proposed uncertainty measures improve the safety and reliability of AUVs operating in the coastal ocean. I

    Underwater Data Collection Using Robotic Sensor Networks

    Get PDF
    We examine the problem of utilizing an autonomous underwater vehicle (AUV) to collect data from an underwater sensor network. The sensors in the network are equipped with acoustic modems that provide noisy, range-limited communication. The AUV must plan a path that maximizes the information collected while minimizing travel time or fuel expenditure. We propose AUV path planning methods that extend algorithms for variants of the Traveling Salesperson Problem (TSP). While executing a path, the AUV can improve performance by communicating with multiple nodes in the network at once. Such multi-node communication requires a scheduling protocol that is robust to channel variations and interference. To this end, we examine two multiple access protocols for the underwater data collection scenario, one based on deterministic access and another based on random access. We compare the proposed algorithms to baseline strategies through simulated experiments that utilize models derived from experimental test data. Our results demonstrate that properly designed communication models and scheduling protocols are essential for choosing the appropriate path planning algorithms for data collection.United States. Office of Naval Research (ONR N00014-09-1-0700)United States. Office of Naval Research (ONR N00014-07-1-00738)National Science Foundation (U.S.) (NSF 0831728)National Science Foundation (U.S.) (NSF CCR-0120778)National Science Foundation (U.S.) (NSF CNS-1035866

    Communication protocols for underwater data collection using a robotic sensor network

    Get PDF
    We examine the problem of collecting data from an underwater sensor network using an autonomous underwater vehicle (AUV). The sensors in the network are equipped with acoustic modems that provide noisy, range-limited communication to the AUV. One challenge in this scenario is to plan paths that maximize the information collected and minimize travel time. While executing a path, the AUV can improve performance by communicating with multiple nodes in the network at once. Such multi-node communication requires a scheduling protocol that is robust to channel variations and interference. To solve this problem, we develop and test a multiple access control protocol for the underwater data collection scenario. We perform simulated experiments that utilize a realistic model of acoustic communication taken from experimental test data. These simulations demonstrate that properly designed scheduling protocols are essential for choosing the appropriate path planning algorithms for data collection.United States. Office of Naval Research (Grant N00014-09-1-070)United States. Office of Naval Research (Grant N00014-07-1-00738)National Science Foundation (U.S.) (Grant 0831728)National Science Foundation (U.S.) (Grant CCR-0120778)National Science Foundation (U.S.) (Grant CNS-1035866
    corecore